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The decomposition of SN:0:2~ to N:O and sulfate is catalyzed both by protons alone and
jointly by protons and H;BO; according to the rate law:

dIn [SN,0:~]/dt = ki[H*] + k[H*][H;BO;).

The activation enthalpy and entropy for k. are, respectively, 7.8 keal/mol and —43 cal/degree
K. Consideration of these values as well as the influence of [H*+], [H;BO;], and ionic strength
suggest that the &, reaction involves reactants of opposite charge whereas for the %, reaction
one of the species entering the rate-determining step is of zero electric charge. A mechanism of
the latter reaction is postulated in which B(OH); acts as an acceptor of electrons from the
nitrosyl nitrogen and one of the OH groups of B(OH); interacts with the SO; moiety of the
SN,0;2 anion resulting in a sulfur penta-coordinated species.

INTRODUCTION

Scrubbing flue gases with basic sulfite
solutions is a rapidly developing technology
for removing oxides of sulfur by absorption
into aqueous solutions. The use of aqueous
scrubbing solutions for NO, abatement has
not appeared to hold as much promise as
for 8O,, however, in part because of the low
solubility and reactivity of NO in water.
This is not the case for NO, which is much
more soluble, but the pre-oxidation of NO
to NO, constitutes a complicating process
step of additional expense. The oxidation
of NO to NO, by the oxygen in air, although
thermodynamically favored, is too slow for
practical utilization in a flue-gas treatment
process. The approach of several such
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processes under development in Japan is
to oxidize the NO in the gas phase by
introducing the reagents O3 or ClO,, after
which the resulting NO,, because of its
solubility, is absorbed into water and caused
to react with sulfite. Several other such
processes incorporate in the serubbing solu-
tion agents such as Fe?r and EDTA which
appear to form complexes with the NO
thereby increasing its solubility and en-
hancing its reaction with dissolved sulfite.
Except for such work, however, it appears
that the reaction of NO with aqueous sulfite
has been largely ignored in the technological
development of aqueous wet serubbing in
spite of the fact that as early as 1802 Sir
Humphrey Davy (1) reported that NO
reacted with K,S0; to form a product
identified a mere 33 years later in 1835 by
Pelouze (2) as K,;S0;(NO).; Pelouze also
showed that this compound decomposed to
N0 and K,SO, upon heating to above
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100°C. About another 120 years passed
before Degener and Seel (3) confirmed that
this potassium compound was a salt of
N-nitrosohydroxylamine-/N-sulfonic acid :

Nsog
The fact that this ion, which is a prineipal
product of the reaction of NO with the
sulfite ion in basie solution, can be made to
decompose to N,O and SO~ heightens
interest in promoting and controlling this
reaction. We report below an investigation
into the catalytic acceleration of the
decomposition of the N-nitrosohydroxyl-
amine-N-sulfonate anion, a reaction which
could become a means of regenerating NO-
saturated sulfite serubbing solutions for
flue gas.

Seel and Winkler (4) investigated the
acid-catalyzed decomposition of this anion,

/
N— N + H®
©0,5
HO 0
Z
>N—N/ + Hp0
90,5

stO4 — 2H® + SO42—
HON=NO® + H+ - HON=NOH
HON=NOH — N0 + H,0

This mechanism involving a final decom-
position of symmetrical hyponitrous acid is
in agreement with Clusius and Schumaker
(6) who determined that !5N-labeled
OBNUNO (80;)?~ decomposed to give equal
amounts of ’N“NO and “N'*NO.

EXPERIMENTAL

Potassium  N-nitrosohydroxylamine-N-
sulfonate was prepared according to litera-
ture methods (7). The concentration of this
ion was monitored by measuring its uv
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and they reported that boric acid also
catalyzes the decomposition. The present
report focuses on this H;BO;-catalyzed
decomposition. At the outset it is useful to
summarize some of the related findings of
Seel and Winkler (4) and Ackermann and
Powell (5). These investigators showed the
decomposition of N-nitrosohydroxylamine-
N-sulfonate to be acid-catalyzed and pro-
portional to the concentration of the start-
ing material. By means of changing the
ionic strength, the activated complex was
shown to have a charge of +1. They also
reported the activation enthalpy of the
acid-catalyzed decomposition as 14.05 keal/
mol and the activation entropy as 22.4
cal/°K. Our recalculation of the results
indicates the latter value is incorrect and
should have been reported as 17.4 cal/°K.
This information led Seel and Winkler to

propose the following decomposition
scheme :
HO 0
- > N — N
O04s
——>  HON=NO®D + H,50,

band at 2580 A on either a Cary 14 or
Bausch and Lomb Spectronic 700 spectro-
photometer. Solutions were prepared of
1.0 X 102 F H3B03, 0.1 F KH2P04, 01F
K,HPO,, and a stock SN,O;*~ solution
containing 30 mg of K,SN,0;, stabilized
by 21 mg of KOH, and 52 mg of Na,H,-
EDTA -2H,0. The solutions were main-
tained in a constant temperature bath,
25°C, until ready for use, at which time
samples of each buffer and SN,0;* solu-
tions were added to the cell, and the
absorbance at 2580 A was recorded on a
strip chart recorder. The pH was deter-
mined with a Fischer Accumet Model
230 pH/ion meter using standard reference
buffer solutions.
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F16. 1. Absorbance of 1.43 X 107 M K,SN.:0;.

Influence of SN,0;*~. The absorbance of
N-nitrosohydroxylamine-N-sulfonate was
observed to decrease exponentially with
time thereby suggesting a first-order rate
law for the decomposition. Figure 1 depicts
the uv spectrum of the SN;0;2~ anion, and
its absorbance at An.. is plotted versus
time in Fig. 2 for a typical decomposition
experiment (Dtn 13).

Influence of [H*]. The notation which
follows is based on the following postulated
kinetic rate law which (as will be explained)
is supported by the experimental data :

dIn [SN20524:|

= ko)s =k [H+]
di 5 1

‘f‘ ]Cz[H+:|[H3B03],
with
kH3B03 = kz[H+][H3B03].

Data are recorded in Table 1 for different
concentrations of buffer, borie acid, SN,042~
ion, and various values of pH, temperature,
and ionic strength. The recorded values of
E,JJH*] have all been corrected to 25°C

and infinite dilution using the activation
energy and ionic strength dependence
previously published by Seel and Winkler.
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Fra. 2. Absorption and subsequent log plot vs
time showing first-order decomposition of SN,O;2.
Data from determination 13, Table 1.
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Fic. 3. pH dependence of the boric acid-catalyzed decomposition of N-nitrosohydroxylamine-N-
sulfonate. The slope of 1.04 shows a direct dependence on the activity of H*. Units of km,no, are

minute™!. See Dtn 49-62 of Table 1.

The graph of log(km,s0,) vs pH plotted in
Fig. 3 has a slope of —1 in accord with the
foregoing kinetic rate law which postulates
that the H;BO;-catalyzed decomposition
is also specific acid-catalyzed and first order
in [H+:|, i.e., ]CH:,B()3 ~ [H+] At the
H;BO; composition [9 X 10~¢F] corre-
sponding to Fig. 3 the rate of SN,O;*~ de-
composition is increased eightfold over the
case of no H;BO; but identical tempera-
ture, pH, and ionie strength.

Influence of tonic strength. Using the
following relationships,

log (k1) = log (k,[H*]) + pH,
log (k.[H3BOs]) = log kmno, + PH,

the values of log (k;) and log (k:[H;BO;])
are plotted versus log (y.) = 0.509(I)/
[1 + (I)¥]in Figs. 4a and 4b, respectively;

here I is the ionic strength. The slope of
the Fig. 4a graph for the (non-boric acid)
acid catalysis is —2.7 and close to the
value of —3.02 observed by Seel and
Winkler (4) thereby indicating reactive
species of opposite charge. The slight offset
of the Seel and Winkler data from our own
measurements might possibly be ascribed
to different concentrations of EDTA used
in the different investigations. The data
plotted in Fig. 4b for constant, non-zero
H;BO; concentration suggest a line of zero
slope, thereby indicating that in the
H;BO;-catalyzed reaction one of the reac-
tant species entering the rate-determining
step is of zero electric charge.

Effect of H3BO;. The data of Dtn 17-26,
at essentially constant pH (6.93) and tem-
perature (=~17°C), are plotted in Fig. 5
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F1a. 4. Effect of ionic strength on rate of (a) acid-
catalyzed decomposition and (b) H;BOj-catalyzed
decomposition. (a) Acid-catalyzed decomposition:
Variation with ionic strength shows slope of 2.7 for
current measurements (solid line) and 3.02 for data
of Seel and Winkler (dotted line) indicating a +1
charge on the activated complex. Units of k; are
minutes™. See Dtn 27-48. (b) Boric acid-catalyzed
decomposition : Variation with ionie strength shows
zero slope thereby suggesting that the activated
complex does not involve the combination of two
charged species. Units of k[ HsBQ;] are liter-mole -
minute 1. See Dtn 49-55.

versus [H;BO;] to demonstrate the linear
dependence of k.,s on boric acid concentra-
tion in accord with the postulated rate law.
To show further that only H;BO; (and not
borate ion species) is involved in the
reaction, Dtn 1-7 were conducted at con-
stant temperature but at differing values
of pH and I by using various proportions
of 0.1 ¥ H;BO; and 0.1 F NaOH in the
reaction mixture. The results are plotted in
Fig. 6 as log (k.[H;3;BO;]) vslog ((H;BO;])
thereby producing a straight line with a
slope very close to unity as expected for
first-order eatalysis involving only H;BO,

PALMER AND COUGHLIN

and not H,BOs;~ or HBO.?~. Thus ko,
= ky[HY][H;BO;] in accord with the
postulated rate law.

Effect of temperature. Corresponding
values of k£, and temperature are tabulated
in Table 2 and plotted as log (k./T) vs 1/T
in Fig. 7. The slope and intercept of this
graph provide estimates of AH* = 7.8
keal/mol and AS* = —43 cal/°K in the
expression

RT 4 AS* —AH*
ke = —exp ( > exp <——> ,
Nh R RT
where R, T, N, and h have the usual
symbolism. A similar treatment of our
data for k; gives AH* = 13.8 & 0.2 and
AS* 15.8 & 1.4 for the acid-catalyzed reac-
tion as compared to the corresponding
values of 14.05 kecal/mol and 17.4 cal/°K
found previously (4).

DISCUSSION

Because ionic strength does not influence
ks, the activated complex of this reaction
may well be formed by the attack of
H;BOj;, a neutral species, on HSN,O;~. The
latter ion is the activated complex previ-
ously postulated (4) for the acid-catalyzed
decomposition in the absence of borie acid.
Because the activation enthalpy (AH*
= 7.8 keal/mol) for the reaction involving
H;BO; is less than the corresponding value
for the formation of HSN,O;~ (reported
as 14.05 kcal/mol by Seel and Winkler),
the site of protonation may be different in
each case. Assuming that any lone pair of
electrons can be protonated, then the
complex:

o
‘.?'-
0]
)] N .-
7N 20,
©0,5" “NF-
®

may have the following sites for proton
attack: A. oxygen atoms {1} or {2} at-
tached to nitrogen; B. the nitrogen atom
{3} not attached to sulfur; C. a sulfite
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X 104

Fic. 5. Effect of boric acid concentration on the decomposition of N-nitrosohydroxylamine-N-
sulfonate at pH 6.93 and 16-17°C. See Dtn 17-26 of Table 1.

oxygen {4}, If the activation energy is of
the same order as the pK for each site, then
the reaction site probability sequence would
be 2 <4 <3 <1 Drago (8 indicates
from ir evidence that there is considerable
single-bond character in the N~N bond and
he postulates that resonance structures I,
II, and IIT are most significant:

0] O]
038-N-N=0 0;8=N-N=0
(I _ (I1)
[(IJI
0;5-N=N-0|
(111)

Cox et al. (9) and Evans and Gergely (10)
assign double-bond character to the N=N
bond.

If we consider the decomposition to
proceed by the formation of N=N and
weakening of the S—N bond, protonation of
oxygen {1} would be the choice for acid-
catalyzed decomposition. This would not
take place as readily as protonation at
oxygen {2} which would be the most
probable site for protonation of the active
intermediate in the H;BOj-catalyzed de-
composition. A specific interaction involv-
ing H;BO; with HSN,O;~ must oceur to
form a complex which easily dissociates to
N.0O. An interaction in which B(OH); acts
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2.2 TABLE 2
r Temperature Dependence of the Boric Acid-
/ Catalyzed Decomposition of N-Nitrosohydroxyl-
-2.4l T = 25.5°C / amine-N-sulfonate®
Dtn T kobsb PH IOg (kz)c
(°C)
T =2.6
g, e 75 192 0.302 7.78 9.60
2 / 76 195 0.303 7.78 9.60
g / 77 19.7 0.328 7.78 9.64
T8 e 8 253 0420 777 975
79 25.4 0.435 7.76 9.74
80 25.2 0.408 7.79 9.74
3.0} 81 28.9 0.491 7.80 9.83
82 28.9 0.537 7.76 9.83
' 83 28.8 0.483 7.77 9.80
- ostimated value 84 320 0.602 7.76 9.88
LY , , , i 85 32.3 0.590 7.77 9.88
6.8 7.0 7.2 7.4 7.6 86 32.5 0.580 7.78 9.89

log (k2[H3BO3])

@ Composition is 9.1 X 104 M KH,PO,, 8.18

Fia. 6. Specific catalysis of HsBOs in decomposi- X 103 M K.HPO, 4.5 X 108 M H;B0; and

tion of SN,O¢?~ in boric acid buffer. Slope of 1.021is 1.5 X 10~ M K,SN;0s. The acid-catalyzed reaction

consistent with first~order dependence on the was about 1%, of the boric acid-catalyzed reactions
H;3BO; activity. Units are: [H;BO;], moles per liter;  under the stated conditions.

and k.[H;BO,], liter-mole-minute. See Dtn 1-7 ® Units of kons are minutes™,
of Table 1. ¢ Units of k. are liters? — mole™2 — minute=1.
7. 7_
7.4
= 7.3
N,
~N
2
o
(o)
—
7.2F
L]
7.1
7.0 I 1 |
0,003275 0.00330 0.00335 0.00340

°K

3l

F1a. 7. Temperature variation of H;BO;-catalyzed decomposition of SN»O;%~, The value deter-
mined for AH is 7.8 keal/mol and 8* is —43 cal/°K. Data are taken from Dtn 75-86 of Table 2.
Units of k2/T are liters>-moles—2-minute1-°K™,
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as an acceptor of electrons from oxygen {1}
would permit one of the OH groups to
interact with the-SO;~ moiety to form a
sulfur penta-coordinated species according
to the reaction scheme:

e
- Ny
C‘) . _035/\4§YT
“035~N—N=0 + H*' 4+ B{OH)y; ——» :
i : Loy Lo
Ho” oM

N N — 2= -
2H' + O=N=N + S057 + H,BO; <——‘

This would also account for the very large
negative AS* which is observed for this
reaction.
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